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Abstract
Mobile edge computing (MEC) is an emerging technology recognized as an effective solution to guarantee the Quality of

Service for computation-intensive and latency-critical traffics. In MEC system, the mobile computing, network control and

storage functions are deployed by the servers at the network edges (e.g., base station and access points). One of the key

issue in designing the MEC system is how to allocate finite computational resources to multi-users. In contrast with

previous works, in this paper we solve this issue by combining the real-time traffic classification and CPU scheduling.

Specifically, a support vector machine based multi-class classifier is adopted, the parameter tunning and cross-validation

are designed in the first place. Since the traffic of same class has similar delay budget and characteristics (e.g. inter-arrival

time, packet length), the CPU scheduler could efficiently scheduling the traffic based on the classification results. In the

second place, with the consideration of both traffic delay budget and signal baseband processing cost, a preemptive earliest

deadline first (EDF) algorithm is deployed for the CPU scheduling. Furthermore, an admission control algorithm that could

get rid off the domino effect of the EDF is also given. The simulation results show that, by our proposed scheduling

algorithm, the classification accuracy for specific traffic class could be over 82 percent, meanwhile the throughput is much

higher than the existing scheduling algorithms.
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1 Introduction

Mobile edge computing (MEC) System, a concept pro-

posed by ETSI in 2014, provides IT and cloud computing

capabilities within the radio access networks in close

proximity to mobile subscribers. Driven by this concept, in

recent years the trend of increasingly moving the cloud

computing towards the network edge is observed. It is

estimated that tens of billions of Edge devices will be

deployed in the near future, and their processor speeds are

growing exponentially, following Moore’s Law [1]. The

increasingly computation load caused by devices makes the

MEC designing should following both disciplines of

computing and wireless communications.

One typical MEC system in the cellular communication

systems, such as 4G, is co-located with the cloud radio

access network (C-RAN) [1]. C-RAN divides the tradi-

tional base station into three parts, i.e., remote radio heads

(RRHs), baseband unit (BBU) pool, and the fronthaul link.

The RRHs only need to compress and forward the received

signals to BBU pool or transmit wireless signals to devices.

Whilst most of the intensive network computation tasks,

such as baseband signal processing, precoding matrix cal-

culation, channel state information estimation are moved to

the BBU pool. In this context, the MEC functions are

integrated into the BBU pool, responsible for the compu-

tation resource-hungry applications and performance

improvements such as video coding, traffic classification,

scheduling. However, comparing with traditional central-

ized cloud in the core network, the BBU pool has much

less computation resources. Therefore, one key issue in

designing a multi-user MEC system is how to allocate the

finite radio-and-computational resources to multiple

mobiles to guarantee the QoS of diverse applications.

In this work, we consider a BBU pool with multiple

mobile devices, each device has one traffic flow. We
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mainly focus on the downlink traffic transmission, where

the traffic from the core network firstly enter the BBU pool,

then by deploying the scheduling algorithm, the CPU of

BBU servers transform the packets into the baseband sig-

nals and transmit them to the RRHs. The BBU server could

perform the traffic monitoring, CPU monitoring and

channel state information (CSI) analyzing. Under this

premise, we solve the issue by proposing a computing

aware scheduling algorithm which includes two parts: real-

time traffic classification and preemptive EDF scheduling.

To demonstrate proposed scheduling algorithm, we need

to clarify the scheduling procedures defined in LTE [2].

When a traffic flow arrives at the BBU, a dedicated bearer

between the BBU and device is set up. Depending the QoS

requirements, the bearers can be further classified as

Guaranteed-bit-rate (GBR) or non-guaranteed-bit-rate

(non-GBR). In this context, the general definition of QoS

requirements is translated in variables that characterize

performance experienced by users. A set of QoS parame-

ters is therefore associated to each bearer depending on the

application data it carries, thus enabling differentiation

among flows. The LTE specify several QoS classes which

is identified through QoS class identifiers (QCIs) [3], i.e.,

scalar value use as a reference for driving specific packet

forward behaviors. Each QoS class is characterized by its

resource type (GBR or non-GBR), a priority level, the

delay budget and acceptable packet loss rate. The radio

resource management (RRM) module translates QoS

parameters into scheduling parameters, admission policies,

queue management thresholds, link layer protocol config-

urations, and so on [4]. The scheduler of BBU then per-

forms the traffic scheduling and resource allocation. The

resource allocation including select the proper modulation

and coding scheme (MCS) and physical resource block

(PRB) according to the devices’ CSI.

In general, the standardized LTE scheduler makes its

decision with the consideration of (1) QoS requirement of

different traffic class; (2) the PRBs’ CSI of associated

devices. However, there are two main drawbacks in prac-

tice: Firstly, there is no label in the traffic packets to

indicate which traffic class the packets belong to. So the

widely used scheduler in BBU, such as, round robin,

maxCQI [5], M-LWDF and EXP/PF [6] are not taking

traffic class into account, hence cannot guarantee the divers

QoS requirements. Secondly, the LTE scheduler does not

consider the computation load in resource allocation. Such

scheduler is efficient when the traffic load is low, however,

with increasingly amount of devices, this assumption will

no longer exist in most of scenarios. As shown in [7], the

latency caused by MEC and baseband signal processing of

C-RAN both affect the traffic’s QoS. This work aims to

tackle the above drawbacks by introduced machine learn-

ing and real-time CPU scheduling algorithms into the

scheduler design. The main contribution can be summa-

rized as follows:

• We provide a SVM based traffic classifier, the param-

eter tunning and training steps are discussed in detailed.

Furthermore, we also give out the results of feature

selecting experiment, which considers seven feature

combinations with 8 types of features. The feature

selecting considers both accuracy and algorithm com-

plexity. The given traffic classifier could real-time

classify 4 most common class of traffic (web surfing,

video stream, OICQ and E-mail) with accuracy above

83 percent.

• We provide a preemptive EDF CPU scheduler, which

could not only consider the diverse QoS requirement of

different traffic class, but also consider the baseband

signal processing load. Moreover, a computing aware

admission control is designed to avoid the domino

effect of EDF scheduling algorithm. The proposed EDF

with admission control could obtain lower packet drop

rate and comparable computing complexity with non-

admission control EDF algorithms.

• To the best of our knowledge, no real-time scheduling

algorithm for the multi-class network traffic with SVM

classification algorithm in MEC system has been

proposed. This work gives a first shot in this field,

and the proposed framework could be easily extend to

other traffic classification and CPU scheduling

algorithms.

The remainder of this paper is organized as follows.

Section 2 introduces several related works. In Sect. 3 we

gives out the system model, traffic model and baseband

processing model, respectively. In Sect. 4, we discuss the

details on real-time traffic classifications. In Sect. 5, the

scheduler with admission control is given. In Sect. 6, we

provide numerical results through simulations. Finally, this

paper is concluded with Sect. 7.

2 Related work

The joint radio-and-computational resources management

plays a important role in realizing the energy-efficient and

low-latency MEC. In this Section, we will first review the

existing resource allocation and scheduling schemes in

MEC, then introduce the current research progress in traffic

classification, at last summarize the results of real-time

CPU scheduling.

Recent proposed scheduling algorithms for wireless

communication systems, such as LTE, mainly consider the

queue status, channel condition, antenna technologies, etc.,

in a cross layer manner [4]. Very few of these algorithms

take the computation resource into account. However, how
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to take full advantage of the computation resources in MEC

is a major challenge, since the BBU pool needs to support

hundreds of times more user equipments (UEs) comparing

with one single base station. In addition, with explosive

increase of multi-media traffic, how to meet the hard

deadline constraint is another challenge to scheduling

algorithm design in C-RAN [8].

Unsurprisingly, considering the computation require-

ment in C-RAN based MEC problems is beginning to

receive attention. In [9, 10], the authors show a computa-

tion outage probability in C-RAN, and also prove that the

choice of modulation and coding schemes (MCS) highly

affect the computational requirements. In [11], a system

power minimization scheme based on VM assignment and

cooperative transmission is proposed. In [12, 13], two

different beamforming algorithms with considering of

computation efforts (in Giga Operations Per Second) are

designed respectively. All of these excellent works use the

computation capacity to formulate the optimization prob-

lem. Based on their results, a guideline to design the system

is well presented, but how to use the computation resources

in real-time is still unknown, which needs to be solved by

scheduling algorithms.

The MEC scheduling algorithms always assume the

arrival of different users are in general asynchronous so

that it is desirable for the edge server with finite compu-

tation resource to buffer and compute the tasks sequen-

tially, which incurs the queueing delay. In [14], to cope

with the bursty task arrivals, the server scheduling was

integrated with uplink downlink transmission scheduling to

minimize the average latency using queuing theory. Sec-

ond, even for synchronized task arrivals, the latency

requirements can differ significantly over users running

different types of applications ranging from latency-sensi-

tive to latency-tolerant applications. This fact calls for the

server scheduling assigning users different levels of pri-

orities based on their latency requirements. In [15], after

the pre-resource allocation, the MEC server checked the

deadline of different tasks during the server computing

process and adaptively adjusted the task execution order to

satisfy the heterogeneous latency requirements. Last, some

computation tasks each consists of several dependent sub-

tasks such that the scheduling of these modules must sat-

isfy the task-dependency requirements. The task model

with a sequential sub-task arrangement was considered in

[16] that jointly optimized the program partitioning for

multiple users and the server computation scheduling to

minimize the average completion time.

Multi-class network traffic classification helps identify

the application utilizing network resources, and facilitate

the instrumentation of QoS for different applications. Early

traffic classification systems rely on transport layer port

number to classify flows. However, with the wide use of

dynamic ports, the less effectiveness makes the technique

based on port number unreliable.Signature matching tech-

nique was proposed by Moore [17]. It derives signature

patterns from various network traffic flows and classifies

the traffic flow through these matching signature patterns.

Although its classification accuracy is high, the continuous

updating of signature patterns and its inability of handling

encrypted packets limit the application [18]. Machine

learning methods classify traffic flows according to the

flow’s statistical characteristics(e.g. packet size,flow dura-

tion,etc.). In [19],the authors use 12 features for two data

sets, the UNB ISCX network traffic data set and their

internal data set, to classify by k-NN classification algo-

rithm. In [20] the authors classify 7 classes of internet

applications with 9 feature parameters, and all of them can

be obtained from the packet header. These methods provide

a guideline to classify the network traffic.

The core of real-time computational scheduling is the

design of the scheduler in operation system, which could

precisely control the CPU’s behavior. Both of the test-bed

based studies in [8, 21] provide a CPU processing model in

C-RAN, whereby [8] has also provided a CPU scheduling

algorithm for RRHs. However, this scheduling algorithm

does not count for the variation of computation require-

ment among the UEs. By using real-world cellular traffic,

[8] has found each CPU could serve at least 4 cells with

heavy traffic load. In fact, the CPU scheduling algorithm

for real-time tasks with hard deadline has been extensively

studied in real-time systems [22, 23]. Specifically, by the

extensive empirical comparison, [23] has proved the fol-

lowing facts for real-time tasks with hard deadline: (1) the

partitioned scheduling algorithm (which means each task is

statistically assigned to a single processor with no migra-

tion allowed) is consistently better than global approaches

(which are contrast to partitioned scheduling); (2) the

deadline based scheduling algorithm performs better than

other scheduling algorithms.

3 System model and back ground

3.1 Generalized MEC model

The generalized mobile edge computing model is given in

Fig. 1. For the purpose of easier description, we extract the

functions of the mobile edge computing system into three

network function entities (i.e. classifier, scheduler, base-

band processing server), respectively. In practice, these

functions can be virtualized and sequently deployed in an

independent edge computing server. As shown in the fig-

ure, the mixed traffic flows are entering the MEC by firstly

going through the traffic classifier. By which, the packets

are classified into predefined traffic types. Hence the
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quality class identifier (QCI) of each packet is decided.

Based on the results of the classifier, the scheduler checks

the QCI and find out the delay budget of each packet. The

admission control is then deployed by the scheduler with

the consideration of QoS requirement and current com-

puting resource utilization status. After that, the scheduler

deploys the scheduling algorithm to select the packet that

will be served next, and delivers it to the next entity. The

baseband processing server receives the packets from the

scheduler. It is primarily responsible for the baseband

signal processing functions, such as: modulation and cod-

ing, IFFT, etc,. Other parts of the MEC which include

upconvertion and wireless transmission is not in the scope

of this article.

3.2 Traffic model

The main focus of the studies that worked on the network

traffic classification is to classify the traffic including web

surfing, Instant Messaging (such as QQ), E-mail and video.

In order to make the research representative, we have

selected four classes representative traffic classification

which are HTTP/HTTPS, OICQ, SMTP and RTSP, cor-

responding the above traffic separately.

The four classes network traffic can be represented as a

set of stream, and the stream is consists of packets. It is

worth noting that all the packets are defined by numerous

features (e.g., source port, destination port ). The ith packet

can be identified by a vector xi 2 Rn,i ¼ 1; 2; . . .; l, and a

label yi 2 Rl that indicates which class the packet belongs

to.

The traces of the four classes packet are shown in Fig. 2.

If a packet has the following same features: protocol,

source address, destination address, source port and desti-

nation port, it will be labelled to the same stream. Fig-

ure 2(a) shows the trace of the RTSP. It can be clearly seen

from the figure that the stream of the RTSP has more

packets than other classes traces. The RTSP can be divided

into two state, which are service beginning state and ser-

vice steady state. During the service beginning state, the

packets are detected. When the state transforms into ser-

vice steady state, packets start to be transmitted. Fig-

ure 2(b) shows the trace of the HTTP/HTTPS. Since the

HTTP/HTTPS connection is held for the duration of a

random number of request/response transaction, the stream

of HTTP/HTTPS is intermittent and the inter-arrival time is

chaotic. Figure 2(c) shows the trace of the SMTP. In

general, when the user uses the E-mail, the headers of the

available messages are downloaded to the computer from

the server. The user will then scan through the headers and

download the messages that the user require. When the user

finishes with the current message, the user will deal with

the next message. Hence, the stream of the SMTP repre-

sents the user’s download time, and the interval between

two consecutive streams represents the user’s reading time.

Figure 2(d) shows the trace of the OICQ. The OICQ is

made up of intermittent bursts, and each burst is consisted

of a stream. The reason for this situation can be explained

by following fact: an interval of continuous talking is a

talkspurt, which results in a burst of consecutive packets.

Figure 3 illustrates an example that the ith packet is

scheduled in CPU at t. The length of the packet represent

the processing time of the packet. When the packet arrives,

it waits to be scheduled. Up arrows and down arrows

denote the arrival time and deadline of the packet. The

arrival time of ith packet is written as ATi. Then the inter-

arrival time between the ith packet and ðiþ 1Þth packet can
be denoted by ITi. Moreover, DTi stands for the deadline.

The processing time of the ith packet can be denoted as Ti,

and then the maximum processing time is written as PTi.

The remaining processing time can be defined as STi. In

addition, the remaining maximum processing time RTi can

be calculated by:

RTi ¼ DTi � t ð1Þ

According to LTE standard [24], the ith packet delay

budget of network in this work is denoted as Di. The delay

budget of network is consisted of two parts: transmission

time TTi and maximum processing time PTi. The trans-

mission time of the packet is the ratio of packet length to

Fig. 1 Generalized MEC model
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bit rate (which will be discussed in next subsection).

Hence, we can deduce the DTi by:

DTi ¼ ATi þ Di � TTi: ð2Þ

3.3 Baseband processing model

In this work, we only concentrate on the network traffic

classification and scheduling. We assume the processing

time is only related to the factors, which are considered

including (de)coding, (de)modulation and FFT/IFFT. The

processing of the packet is fully implemented in the BBU

pool. Under this promise, the value of MCS is chosen

randomly.

For each factor, the processing time is measured on the

Intel E5-2600V4nDDR4 64Gn Broadcom NetXtreme

Gigabit Ethernet for different PRB zi and MCS ri. The

FFT/IFFT increase only with the PRB, while (de)coding

and (de)modulation are increase as a linear function of

allocated MCS and PRB. In addition, the (de)coding rep-

resents the most time consuming factors in processing.

According to [8], the processing includes two compo-

nents: base processing and dynamic processing. Based on

the above introduction, the base processing is consisted of

FFT/IFFT. Considering the practicability of the processing

model, the base processing only depends on the channel

bandwidth and is imposed a constant load on the system.

On the other side, the dynamic processing load includes

(de)coding and (de)modulation.

In this work, we assume these PRBs are 25. Note that

different values of MCS correspond to different modulation

modes which are shown in Table 2. We can deduce a

model to calculate the actual processing time for different

MCS by:

Tiðzi; riÞ½us� ¼ c½zi�
|{z}

base processing

þ usðzi; riÞ
|fflfflfflffl{zfflfflfflffl}

dynamic processing

:
ð3Þ

Fig. 2 Traffic trace

Fig. 3 An example of the packet

time series in CPU
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where the triple ðzi; riÞ represents PRB, MCS. The c½zi� is
the base processing and usðzi; riÞis the dynamic processing

that depends on the allocated PRB and MCS. The usðzi; riÞ
is linearly fitted to aðziÞri þ bðziÞ, where a, b are the

coefficients and ri is the MCS. Table 1 provides the pro-

cessing model parameters of the Eq. (3).

Considering the LTE Turbo-coder, the internal inter-

leaver is decided by a limited number of code-block sizes

and the set of transport block size is defined in LTE to

ensure the transport block size (i.e. the bits carried by

PRBs) of arbitrary size which can be segmented into code

blocks that match the set of available code-block sizes [25].

Based on the MCS index and the number of allocated PRB,

the transport block size can be obtained by looking up the

Tables 7.1.7.1-1 and 7.1.7.2.1-1 provided in specification

[26]. According to the protocol [26], the transmission time

of each block equal to 1 ms. Therefore, the bit rate and the

corresponding symbol rate can be obtained. Different

maximum processing times PTi corresponding to different

MCS are shown in Table 2.

4 Real-time traffic classification

4.1 SVM based multi-class traffic classification

A support vector machine algorithm constructs a hyper-

plane or set of hyper planes in a high dimensional space,

which can be used for classification, regression or other

tasks. SVM has ability to simultaneously minimize the

empirical classification error and maximize the geometric

margin classification space. These properties reduce the

structural risk of over-learning with limited samples. There

are two key factors while using SVM to classify the traffic.

First one is the kernel function which maps the input fea-

ture vector to the high dimension hyperplane. In this work

we choose the RBF as kernel function. Another one is the

regularization parameter C, which can represent the degree

of punishment and have great influence on the experiment

result.

We start the introduction of traffic classification with the

simplest case: classify two traffic classes. Given a training

vectors xi 2 Rn; i ¼ 1; 2; . . .; l, in two classes, and an

indicator vector y 2 Rl such that yi 2 f1;�1g. Then the

optimal classify boundary is solved as the following con-

vex quadratic programming problem:

min
w;b;n

1

2
wTwþ C

X
l

i¼1

ni

s:t: yiðwT/ðxiÞ þ bÞ� 1� ni

ni � 0; i ¼ 1; 2; . . .; l

ð4Þ

where /ðxiÞ maps xi into a higher-dimensional space and

C[ 0 is the regularization parameter. This primal opti-

mization problem could be transferred to the following

dual problem, which could lower the computing com-

plexity due to the possible high dimensionality of the

vector variable w:

min
a

1

2
aTQa� eTa

s:t: yTa ¼ 0

0� ai �C; i ¼ 1; 2; . . .; l

ð5Þ

where e ¼ ½1; . . .; 1�T is the vector of all ones, Q is an l by

l positive semidefinite matrix, Q � yiyjKðxi; xjÞ, and

Kðxi; xjÞ � /ðxiÞT/ðxjÞ is the kernel function. Here, we

choose the widely used RBF kernel e�ckxi�xjk2 to evade

prohibitive computation cost while computing /ðxiÞ.
Notice that, both of C in Eq. (3) and c are user specified

parameters, which has significant influence over the clas-

sification results. Hence in the next subsection, we will

discuss on how to optimize them.

After solving the Eq.(4), using the primal-dual rela-

tionship, the optimal w satisfies

w ¼
X
l

i¼1

yiai/ðxiÞ ð6Þ

Then the decision function is

sgn wT/ðxÞ þ b
� �

¼ sgn
X
l

i¼1

yiaiKðxi; xÞ þ b

 !

ð7Þ

Hence if Eq. (6) is positive, then the xi is classified as

yi ¼ 1; otherwise, xi is classified as yi ¼ �1. We store yiai,

Table 1 Processing model

parameters in us
zi c usðzi; riÞ

a b

25 23.8 4.9 24.4

50 41.98 6.3 70

Table 2 Different values of MCS correspond to rate and maximum

processing time

MCS 9 16 27

Modulation Modes QPSK 16QAM 64QAM

Block Size 4008 7736 15840

Bit Rate /(Mbit/s) 4.008 7.736 15.84

Symbol Rate /(Msymbol/s) 2.004 1.944 2.64

Maximum Processing Time/us 155.11 189.41 243.31
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b, x and other information such as C and c in the model for

prediction.

To extend the two traffic class classification to multi-

class one, we use the so-called ‘‘one-against-one’’

approach. Suppose there are k classes, then kðk � 1Þ=2
classifiers are constructed and each one trains data from

two classes. For training data from the ith and the jth

classes, we solve the following two-class classification

problem.

min
wij;bij;nij

1

2
wij
� �T

wij þ C
X

k

ðnijÞk

s:t: wij
� �T

/ðxkÞ þ bij � 1� nijk ; if xk is in the i th class

wij
� �T

/ðxkÞ þ bij � � 1þ nijk ; if xkis in the j th class

ð8Þ

The voting strategy is deployed for the classification, each

binary classification is considered to be a voting, in the end

a point is classified to be in a class with the maximum

number of votes.

4.2 Parameter tunning

For SVMs, in particular kernelized SVMs, the parameter

tunning is crucial but non-trivial. As mentioned, the key

parameters of the SVM with RBF kernel function is the

soft margin C and the regulationary parameter c. In this

work, we use the method of grid searching, combined with

cross-validation to obtain the optimal combination of

ðC; cÞ:
Grid search algorithm is a kind of exhaustive search

method. Thanks to the independent of C and c, we could

built a grid that set C and c as the horizontal and vertical

axes. The research region of C and c is 2cmin; 2cmax
� �

and

2gmin; 2gmax
� �

, respectively. We set the searching step size

is 1 for both parameters, then the optimal parameter

combination could be found by searching all grid points of

ðC; cÞ. The cross validation (CV) is performed for each

ðC; cÞ, the ðC; cÞ that with the highest CV is the optimal

parameters. We then use the optimal parameters to train the

whole training set and generate the final model. In this

work, we set the value of cmin and gmin as �8, and the

value of cmax and gmax as 8. Parameter C controls the

largest hyperplane and minimizes the data point deviation.

After deploying the grid searching and cross validation

over the data set, we obtain the value of C is 32768 and c is
8, and the CV accuracy is 79.9729 percent. The grid

searching algorithm is demonstrated in Algorithm 1.

4.3 Classifier

Figure 4 captures the overall training and testing process

that results in a classification model. In this work, we train

the classifier by providing two kinds of IP traffic: traffic

matching the class of traffic that we wish later to identify in

the network (in this case the web surfing, video stream, QQ

and E-mail) and representative traffic of entirely different

applications we may see in the future. The two traffic set

are labeled before the training. As shown in the figure, first

a mix of traffic traces are collected that contain both

instances of the application of interest and instances of

other interfering applications (such as DNS, SSH and

Peer2Peer file sharing). The ‘‘flow statistics processing’’

step involves calculating the statistical properties of these

flows (such as mean and variance of the inter-arrival time,

packet length, etc,.) as a prelude to generating features. The

following step is selecting the features of captured packets.

As we will observe later, different features will cause

obviously accuracy and computation complexity gap. The

feature selecting is also carried out in cross-validation

manner. Different features of two-thirds of the labeled data

set are selected for training, and the remaining one-third of

the data are used to verify the classification accuracy. The

aforementioned parameter optimization step is also

implemented for each cross-validation procedure. The

features that obtain the highest accuracy are used to clas-

sify the traffic later, and the associated parameters are

adopted as the final parameters.

We capture the packet from the servers of our campus,

which is equipped with Intel E5-2600V4nDDR4 64Gn
Broadcom NetXtreme Gigabit Ethernet. The experimental

environment is shown in Fig. 5. We use wireshark to

monitor the server’s port and store the packets’

information.

We extract 10 kinds of features from the data packets

which is shown in Table 3. However, UDP flows do not

Algorithm 1 Parameter Optimization Algorithm

1: c = γ = 2−8,m = 0;
2: while C < 28 do
3: C = 2−8 + m,m = m + 1,n = 0;
4: while γ < 28 do
5: γ = 2−8 + n,n = n + 1;
6: Use the current γ and C for classifica-

tion.Calculate and record classification accu-
racy,C and γ.

7: end while
8: end while
9: Sorting the classification accuracy, return C and γ

with the highest CV accuracy.
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have window size, so it can not be used to classify. In

addition, according to other articles and our previous work,

we chose 1, 2, 3 and 4 as our classification features. In the

same time, we label each feature to be used later.

While selecting the directly captured packet features as

the classification features, we also take the mean and

variance of the packet length and interval time as the

classification features. Among them, we choose to have the

same protocol, source address, destination address, source

port and destination port to the same stream, and the mean

and variance is calculated for same stream. Eight types of

features shown in the Table 4 are studied for feature

selection.

In each cross-validation test, we use the traffic traces

which only include the traffic of interest. Since most of the

data packets that are initially captured are control infor-

mation (i.e. SYN, ACK), and the packet length is relatively

small which cannot show the different between the classes,

hence we ignore the packets of this part and select the data

packets of the main body.

We divided into the following combinations to classify

the packets and observe their classification accuracy. As

shown in Table 5, we divide the feature combination into

7 types. We train each feature combination and then clas-

sify by the classifier. We chose the first two-thirds of the

packet for training, and the second one-third is classified.

For each type of data, we also conduct the classification

test separately.

The classification results are shown in the Fig. 6. From

the figure, we can see that the classification accuracy dif-

ferent feature combination is different.At the same time,-

considering [27] mentioned that the source port number

and the destination port number are not suitable for clas-

sifying some encrypted application, so we finally chose the

F class as the data feature of our classification.

4.4 Real-time traffic classification

As shown in Fig. 7, when a real-time traffic flow arri-

ves,the mean and variance of the packet of the real-time

Fig. 4 Training procedures

Fig. 5 Experimental environments

Table 3 Captured data characteristics

1 Packet length 6 Arrival time

2 Interval time 7 Protocal

3 Source port 8 Source address

4 Destination port 9 Destination

address

5 Window size 10 Stream index

Table 4 Selected data characteristics

1 Packet length 5 Mean packet length

2 Interval time 6 Variance packet

length

3 Source port 7 Mean interval time

4 Destination

port

8 Variance interval time
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traffic flow are calculated. Next,the features of the packet

input into the classifier for classification. In this way,the

packets are classified into a specific class. The period,

processing time,packet length,arrival time ,interval time

and deadline of each data packet can be get according to

the result of the classification. Among them, The period,

processing time,and deadline can be computed by the

formula in Sect. 3, and the the packet length,arrival time

and interval time can be read in the head of the packet.

Then the data packet is scheduled according the features.

The period CTp of each traffic class is given in Table 6.
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Fig. 6 Classification accuracy

of different feature combination

Fig. 7 Classification of real-

time traffic flow

Table 6 The period of four types tasks

Type OICQ Video E-mail Browse the web

Period/us 0.009203 0.002664 0.003743 0.025081

Table 5 feature combination

A 1,2 E 1,2,3,4,7,8

B 3,4 F 3,4,5,6,7,8

C 1,2,3,4 G 1,2,3,4,5,6,7,8

D 1,2,3,4,5,6
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5 Scheduling

5.1 Preemptive EDF scheduling

Among numerous real-time scheduling algorithm, the

scheduling algorithm that based on priority is one of the

most important type of scheduling algorithm in real-time

scheduling method. According to the different priority

assignment strategy, the scheduling algorithm can be

divided into static priority scheduling and dynamic priority

scheduling. As shown in Fig. 8, EDF algorithm is a typical

representative of the dynamic priority scheduling

algorithm, which is more flexible to meet the QoS

requirement of the flows.

Preemptive EDF scheduling algorithm always schedule

the packet with earliest deadline, which is deployed under

following assumptions:

(1) There is no unpreemptible part of any task, and the

cost of preemption can be ignored;

(2) Only the processor requests make sense,memory,

I/O, and other resources requests can be ignored;

(3) All tasks are irrelevant;There is no constraint of

order.

Fig. 8 Process of EDF
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In this work we adopt preemptive EDF as the scheduling

algorithm, and set the scheduling cycle to be 1 us. At the

beginning of each scheduling cycle, the arrival of the data

packet is monitored. If not, the idling or data recovery

operation is performed. If yes, the data packet is added to

the queue to be scheduled, and the information of the data

packet is stored into the scheduling queue. After the the

scheduling queue is refreshed, the scheduler should judge

whether the newly arrived packets arrive at the same time.

If there is a data packet that arrives at the same time, the

queue operation is repeated. Otherwise, the scheduling

process is started. The scheduling starts with an admission

control which will be discussed later, and after that enters

EDF scheduling. While EDF scheduling, the scheduler

determines whether the queue is empty. If it does, the

current cycle does not need to be scheduled, and idle or

data recovery procedure is performed. If there is any data

packet in the queue, then the EDF scheduling is performed

and the packets are sorted according to the deadline. The

packet that with the earliest deadline is processed first.

Then, the scheduler checks whether each packet in the

queue to be scheduled can meet the deadline, and directly

discard the mismatch packets, and then the recovery pro-

cess is performed by the admission control. After all above

operations, the scheduler go to the next schedule cycle.

5.2 Computing aware admission control

According to the EDF algorithm, the most important fea-

ture is to predict in advance whether the scheduler can

perform in the current working environment and adjust the

scheduler scheduling according to the predicted result to

ensure that the scheduler can perform normally and reduce

the packet loss.

When users surf online which generates a series of work,

the generated data packets arrive in real time. We divide

the data packets into four categories according to the

extracted features, and perform EDF-based scheduling on

these four classes to improve CPU efficiency, but in the

past The EDF scheduling algorithm will directly drop a

part of the data packet that exceeds the CPU performance

when the CPU utilization is full.The feature of the packet is

show in Fig. 9. This is a great loss to the user experience

and this reduces the service efficiency of the network when

it is busy. For such reasons, we propose an admission

control method to improve the working capacity of the

CPU and reduce the number of CPU lost packets to

improve the network service quality.

The core idea of the admission control involved is to

predict the scheduling process that the scheduler is about to

face and make a series of initial judgments under such

circumstances. In the current network environment, no one

can guarantee when the data packet arrives, so in order to

cope with the real-time changing network environment, the

scheduler must perform admission control before each

scheduling, although this requires higher on CPU.The

process of the admission control is shown in Fig. 10.

The process of prediction is to calculate whether the

scheduler is running at full capacity for the next period of

time. Whenever a packet arrives, a prediction can save the

computational resources occupied by the prediction and if

no new packets arrive, the predicted result will not change.

Firstly, find out the deadlines of all the packets in the

sequence to be scheduled, sort by size, for the deadline of

the pth data packet, denote DTp, and its calculation time is

STp, we have the formula:

STpsum ¼
X
p

n¼1

STn ð9Þ

According to the comparison between the obtained STpsum
and DTp, if DTp is smaller, it means that the scheduler

Fig. 9 The parameters of admission control
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cannot complete the task of the data packet until the time to

DTp, and then:

STsave ¼ STpsum � DTp ð10Þ

The obtained STsave is the saved data part that cannot be

completed. When the scheduler has idle, the data is

restored for processing. Of course, the premise is to meet

the QoS requirements of the data packet. The rest of the

situation indicates that the task of the packet can be

scheduled.Then there is the process of data processing. The

processing process consists of two parts. The first part is to

store the excess part of the overloaded data packet, and the

second part is to process the previously stored data packet

when the system has no work in the current cycle.

The processing is executed when the system is idle for

the cost of time. When saving the data packet, judge all the

data packets in the queue to be scheduled. According to the

deadline of the data packet, for each deadline, calculate the

total service time of the data packet before the deadline. If

the total service time exceeds the deadline, then the process

cannot be scheduled by the system, and the difference

between the deadline and the service time is saved as the

service time for saving the data packet.

The number of storage spaces is related to the number of

classifications of the classifier. Different types of data

packets are stored in different storage spaces. When the

data packet is restored and used, the recovery order is

specified according to the requirements of the quality of

service, that is, the order of the storage space. When there

is a chance to recover, traverse in order.

The second part is the work of restoring the save. Since

the CPU has no time to work, the work that has been

squeezed out is saved by calculation. After saving the

work, it is detected whether the current time unit of the

CPU will be occupied, whether there is idle time, if not,

then enter the normal scheduling process, but if there is,

you can use this time to restore the previously saved

business and the packet discarding, determining whether

there is a saved data packet by the size of each storage

space, and if so, first performing a packet loss processing

judgment, that is, when the current time is greater than the

deadline for storing the data packet, discarding the data

packet, traversing the entire saved data space. Then, the

operation of restoring the data packet is performed, and the

saved data packet is searched from the set priority order. If

the processing is found and the data packet is processed,

Fig. 10 The process of admission control

Algorithm 2 Admission Control
1: Input: matrixes-process, now-time;
2: Output: flag, now-time;
3: for all i <=matrixes-process-length do
4: if Now-time+Cisum > Di then
5: Savedata=now-time+Cisum-Di;
6: if Ti =data-packet-type[k] then
7: space-save-data[k]=Savedata
8: num-save-data++
9: end if
10: Cisum = Di−now-time
11: end if
12: end for
13: if num-save-data>0 then
14: if num-save-data-type[k]>0 then
15: while i<num-save-data-type[k] do
16: if deadline-save-data[i]>now-time then
17: Delete save-data[i]
18: end if
19: i++
20: end while
21: end if
22: end if
23: if matrixes-process-length= 0 then
24: if num-save-data-total> 0 then
25: if num-save-data-type[k]> 0 then
26: save-data=save-data-time-unit
27: now-time=now-time+time-unit
28: if save-data<=0 then
29: Delete save-data
30: end if
31: end if
32: end if
33: end if
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and if the processing is completed, the saved data is

deleted, otherwise the operation is not performed. Only one

packet is processed at a time, and the processing returns to

the schedule after the processing ends.

There are two levels of sequence here. The first layer is

the sequence of multiple classification result storage

spaces. This order is different according to the different

order of service quality requirements, and the second is the

sequence of arrival of data packets in the space. The order

of these two layers determines the recovery order of work.

6 Simulation

In this part, we study the influence of SVM algorithm and

EDF algorithm on the real-time CPU Scheduling approach

for Mobile Edge Computing System by simulation.

In the process of classification,We capture 10G data

packets by using wireshark through server which network

port rate is 5M.The packets contain the four types of task

that we will classify. Using cross validation for parameters

optimization can improve the classification accuracy of the

data. The classification accuracy of the four types of task

that we choose is shown in the following Table 7. These

tasks is classified by SVM algorithm which is described in

Sect. 4.

For different class of traffic, the SVM with optimization

of the parameter has different effection.From the Table 7,

we can see clearly that using parameter optimization can

improve the accuracy of classification.

As shown in the Table 8, for different feature combi-

nation,the training time of classification is different,and the

accuracy of classifying the same data set is different too.

We use the ratio of accuracy and time to characterize the

efficiency of the training. It can be seen from the Table 8

that the combination of features of class F has higher

efficiency, which can ensure higher classification accuracy

and shorter training time.

The classifier is trained by the same set of packets,and

the classifier is used to classify the feature combination of

the same class,which increases as the number of data in the

packets increase,but when the number of packet is large

enough,the difference of time is small.However, the time is

independent of the number of features in the feature

combination when the classifier performs classifica-

tion.When the combination of the B and F features com-

bines the same number of data sets, the time required is

basically the same, but the accuracy of the classification is

different. Feature combination G require the most time to

combine classification data.It can be seen from the Fig. 11

that the features that have a greater impact on the classi-

fication time are the packet length and the interval time.The

mean and variance of the packet length and the interval

time have less influence on the classification time.

The total processing time can be modelled as a function

of CPU frequency.According to the relationship between

CPU frequency and processing time, we analyzed the

impact of admission control on packet loss rate, delay and

throughput under different CPU frequencies.

The combination of classification and scheduling could

not only consider the diverse QoS requirement of different

Table 7 The influence of

parametric optimization on

classification accuracy

Type OICQ Video E-mail Browse the web

The number of packet 196710 849613 22771 63778

Classification accuracy of parameter optimization 0.88726 0.85094 0.84923 0.831525

Classification accuracy of default parameters 0.803594 0.85 0.83536 0.827731

Table 8 The time and accuracy to train different feature combinations

Feature combination Time/s Accuracy Accuracy/time

A 499 0.8708 0.001745

B 299 0.868 0.002903

C 704 0.8638 0.001226

D 794 0.8442 0.001063

E 757 0.867 0.001145

F 238 0.908 0.003815

G 852 0.8844 0.001038
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Fig. 11 The influence of different feature combinations on time
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traffic class, but also consider the baseband signal pro-

cessing load. Moreover, it can obtain lower packet loss

rate, lower computing complexity and higher computing

resource utilization.

It can be seen from Fig. 12 that the system frequency

has a large packet loss rate between 0 and 0.8G, and the use

of admission control shows a trend of getting better and

then getting worse between 0.8G and 1.6G, and is equal

after 1.6G. Even in the case of 0, the possible reasons are as

follows:

When the system frequency is low, it can’t be processed

at all or it can’t handle the arrival of network packets, the

system will have an unschedulable state. In this state, there

is no idle time left to the admission control for recovering

the data packet, resulting in the loss. The case where the

packet rates are almost equal.

In order to meet the requirements of low latency, the

data packet storage time is limited, and it will be lost when

the deadline is reached. If the system cannot be idle, the

admission control has no chance to recover the data packet.

In this case, admission control can not improve the sys-

tem’s condition, but will increase the system’s computa-

tional overhead and reduce the efficiency of the system. So

in this case, the admission control is not recommended.

When the system frequency is high, the packet loss rate

is also nearly the same. Even when the system frequency

exceeds a certain value, the packet loss rate will be zero.

This situation arises because the system computing power

is fully capable of handling the incoming data stream, so in

this case, the admission control does not appear to improve

the system. In this case, consider using the admission

control to cope with the possible sudden flow situation.

When the system frequency is at an intermediate value,

the difference in packet loss rate is somewhat reflected. At

this time the system will be busy, but not always busy.

Sometimes the system will be idle, then you can call

admission control. When a burst of data flows, the pro-

cessing speed of the system cannot completely process the

incoming data packet, and the admission control saves the

unprocessable part. When the system is processed, if the

delay is not exceeded, Recover packets that were not

processed before. Therefore, at the intermediate frequency,

the packet loss rate curve shows a situation of getting better

and then getting worse. In this case, using the admission

control can effectively improve the performance of the

system.

As can be seen from Fig. 13, the delay aspect tends to

decrease as the frequency increases and the delay decrea-

ses. However, admission control does not significantly

reduce the delay, and sometimes there is an increasing

trend. The reason is that the data packet recovered by the

admission control is not scheduled by the system and will

be performed when the system is idle. At this time, the

delay of the data packet is larger than those of the normal

processing, and the delay is slightly increased, so there is

some performance degradation in terms of delay.

As can be seen from Fig. 14, the throughput is very high

at 0.8 Ghz, showing an abnormal trend, but after 0.8G, it

will be found that the throughput increases as the frequency

increases. The reason for the low frequency throughput is

that when the system frequency is too low, the system

cannot handle the arrival of these data packets, most of the

data packets are discarded, and only a small number of data

packets are processed normally. This caused an abnormal

situation in which the number of processed data packets

was small and the time was also short. When the system

frequency increases, it can be seen that the throughput is

proportional to the system frequency. When the system

frequency increases, the ability to process data packets is
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Fig. 12 The influence of different frequency on packet loss rate
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also enhanced accordingly. The data packets processed per

unit time increase, and the throughput is naturally high.

After the admission control is added, the admission control

performs data recovery operations in the appropriate fre-

quency range, improving throughput. However, the fre-

quency improvement effect is reduced because the

processing power of the system is improved, and the situ-

ation in which scheduling is impossible is reduced.

It can be seen from the experimental results that it is

crucial that the admission control can effectively predict

the situation where the packet will be lost and save it.

Although there are few opportunities in the experiment to

find the system idle state to restore the previously saved

data services, we can see that high system frequency and

low system frequency are not ideal results. When the sys-

tem frequency is low, the number of queues can be seen.

Too large, slow processing speed, low throughput, and

insufficient ability to handle business. However, when the

system frequency is high, the queue has a lot of idleness,

and a large amount of computing resources are idle, which

greatly reduces the utilization efficiency of the system, but

the throughput is high, the delay meets the requirements,

there is no packet loss, and the processing speed is fast.

As can be seen from the above, the delay of various

frequencies meets the requirements. But for low frequen-

cies, a lot of packet loss and system congestion become the

norm, affecting network circulation and user experience.

For high frequencies, a large amount of idle time wastes

the computing resources of the system and reduces the

utilization of the network.

It can be obtained that in the business where the network

service is not busy, a lower frequency CPU can be used.

High-performance CPUs are used in nodes where network

traffic is busy. Admission control is better for systems with

lower system frequencies and relatively busy network

services. When the system frequency corresponds to the

busyness of network services, the adoption of admission

control can effectively reduce the packet loss rate and

reduce the occurrence of bad phenomena such as user jams.

But increase the network delay.

The curve in the figure is in line with expectations. For

the case of sudden increase in network traffic, admission

control can effectively improve the utilization rate of the

system and the service effect. However, for the long-term

busy situation of the network service, if the CPU does not

have a suitable frequency, the effect of the admission

control is not obvious, as shown by the curves in the figure.

In this work, we study the performance of EDF with

admission control by simulation. For comparison, the

scheme adopted by LTE is used as a benchmark. To

decrease the complexity order, we proposed LTE which is

a simplified algorithm. Specifically speaking, the CPU

deploys a fixed priority scheduling, where the server

depends on the predefined priority as defined by

Table 6.1.7 in specification [3].

In Fig. 15, we present the variations of processing time

obtained by the EDF algorithm and LTE versus the number

of packet. We can observe that EDF algorithm with

admission control have lower processing time than LTE,

and the performance gap is increasing with the number of

packet. It can validate the efficiency of EDF algorithm with

admission control.

In Fig. 16, we show the variations of packet loss rate

obtained by the EDF with admission control and LTE

versus the number of packet. It is obvious that EDF algo-

rithm has much better performance than LTE. We can see

that the packet loss rate basically stay the same when the

number of packet reaches 2000 under EDF, while the

packet loss rate closes to 1 under LTE.
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7 Conclusion

In this work, we have proposed a computing aware

scheduling algorithm in MEC. The proposed scheduling

algorithm reinforce the traditional LTE scheduler by

combining the real-time traffic classification and CPU

scheduling. The SVM based traffic classification algorithm

with parameter tunning and training procedures are given,

best combination of features is obtained based on extensive

cross-validations. The preemptive EDF scheduling with

admission control is given in the second place. It attempts

to break the barriers between the computation and wireless

communications. Numerical results have illustrated the

efficiency of the preemptive EDF scheduling with admis-

sion control, which showing advantage over the preemptive

EDF scheduling without admission control and LTE.

The classification method in this study is supervised

learning mode, and the focus of our future work is to study

and evaluate other classification methods in unsupervised

learning mode. Meanwhile, it’s also an important future

direction how to re-train classifiers and extend the life of

classifiers.
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